Determination of Constants of Anionic Substituents based on Nitrile Infrared Frequencies and Intensities

Ivan G. Binev,* Rositsa B. Kuzmanova, José Kaneti, and Ivan N. Juchnovski
Institute of Organic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Abstract

A new approach, based on dual-parameter correlation equations, for the determination of σ^{+}and other substituent constants is described; it consists of the simultaneous use of data for a given substituent, obtained from at least two different series. Constants of 14 negatively charged substituents have been calculated on the basis of Yukawa-Tsuno-type correlations of nitrile i.r. frequencies and intensities, measured in polar aprotic solvents. The reliability of the constants of anionic substituents, thus obtained, is exemplified in series of carbonyl frequencies of ketones and esters.

Correlations of frequencies (v_{CN}) and integrated intensities (A_{CN}) of the nitrile stretching bands of substituted benzonitriles have been studied repeatedly. ${ }^{1}$ These spectroscopic features have been recommended and/or used for the determination of various substituent constants (see e.g. refs. 2 and 3 and references therein).

Determination of σ^{+}constants of anionic substituents by the standard chemical method ${ }^{4}$ is obviously impossible. It has been recently reported that even reliable σ° values of charged (both anionic and cationic) substituents cannot be determined by this method. ${ }^{5}$ This result has been considered to indicate that charged substituents do not obey Hammetttype relationships. ${ }^{5}$ One should point out, however, that the reactivity of ionic species is extremely sensitive to ionic aggregation, ${ }^{6}$ and the latter is a complex function of the solvent, concentration, counterion, etc. ${ }^{6}$ On the other hand, carbonyl, nitrile, and other i.r. frequencies of ionic species are fairly independent of the solvent and/or counterion. ${ }^{7}$ We believe, therefore, that an i.r. spectroscopic approach to the determination of constants of charged substituents could be a reasonable alternative.

The aim of this paper is to describe the determination of $\sigma^{+}, \sigma^{\circ}$, and $\Delta \sigma_{R}{ }^{+}$constants of a series of anionic substituents on the basis of correlations of nitrile i.r. frequencies and intensities of substituted benzonitriles in polar aprotic solvents.

Results and Discussion

The v_{CN} and A_{CN} values for 60 substituted (45 neutral) benzonitriles are listed in Table 1 and the results of the statistical treatment of the data for the neutral compounds, according to the equations of Brown and Okamoto, ${ }^{4}$ Yukawa and Tsuno, ${ }^{8}$ and Taft ${ }^{9.10}$ [equations (1)-(3), respectively] are given in Table 2.

$$
\begin{align*}
& Y=\rho \sigma^{+}+b \tag{1}\\
& Y=\rho\left(\sigma^{\circ}+r^{\prime} \Delta \sigma_{R}^{+}\right)+b \tag{2}\\
& Y=\rho_{I} \sigma_{I}+\rho_{R} \sigma_{R}^{+}+b \tag{3}
\end{align*}
$$

A comparison of the resulting correlation factors (Table 2) with those already known ${ }^{3,11}$ and the results of the statistical treatment of the literature data for CCl_{4} and other solvents ${ }^{12}$ indicates that the use of dimethyl sulphoxide (DMSO) and hexamethylphosphoramide (HMPA) instead of the usual spectroscopic solvents does not change significantly the relative accuracy of the studied correlations. This fact is essential because benzonitriles with anionic substituents can be easily generated in polar aprotic solvents only.
In order to evaluate σ^{+}constants of the studied charged
substituents by the usual method, one should substitute any of the v_{CN} or $A^{3} \mathrm{CN}$ values of a given anion in the corresponding correlation equation from Table 2 and solve it with respect to σ^{+}; the errors of these σ^{+}values can be estimated by simultaneously taking into account the errors in the slopes and intercepts, and the experimental errors. This method gave, for example, for the substituent $4-\mathrm{O}^{-}$from the four experimental results and correlation equations 3,4,7, and 8 (Table 2) the values $-5.5 \pm 0.4,-4.9 \pm 0.3,-3.4 \pm 0.2$, and -3.7 ± 0.2. Having in mind the value of -2.3 reported previously, ${ }^{13}$ one can see that there is no consistency within the values obtained from different definition series. We should note, however, that a strong sensitivity with respect to the definition series is characteristic of all σ-constants, for all the substituents (both neutral and charged); the differences between their values, given by different definition series for the same substituent, are considerably larger than the estimated errors ($c f$. refs. 5,13 , and 14, and the above example).

One can deduce, therefore, that the origin of these variances is not the experimental errors or the low accuracy of the corresponding correlations, but they are rather results of the different contributions of induction and resonance to the total substituent effects in the different series. This statement is important because it suggests that a direct determination of σ-constants in any series different from the standard one (of the corresponding type of constants) is not justified. The use of mean values is not justified either, as it has been shown ${ }^{14}$ that the different-series σ-constants show no tendency to converge to the standard values of σ, σ^{+}, or σ^{-}.

We tend to believe that a rational approach to the problem is to account for the different ratios of constituents of the total substituent effects by use of dual-, or, occasionally multiparameter relationships, and to express e.g. σ^{+}as $\sigma^{+}=\sigma^{\circ}+$ $\Delta \sigma_{R}{ }^{+}$(Yukawa and Tsuno) or $\sigma_{p}{ }^{+}=\sigma_{I}+\sigma_{R}{ }^{+}$(Taft). The former expression has the advantage of providing both $\sigma_{\text {para }}{ }^{+}$ and $\sigma_{m e t a}{ }^{+}$; in addition to this we should mention that a recent analysis ${ }^{15}$ has indicated that the Yukawa-Tsuno equation is physically better justified (for the case of benzene derivatives) than that of Taft.

To obtain reliable substituent constants, we decided to use all the data available for v_{CN} and $A^{\frac{1}{\mathrm{cN}}}$ simultaneously, to construct systems of four (Yukawa-Tsuno) or eight (Taft) equations with two unknowns, and to solve them by the leastsquares method. The σ° and $\Delta \sigma_{R}{ }^{+}$values are given in Table 3 ; σ_{I} and $\sigma_{R}{ }^{+}$thus obtained seem to be less reliable (cf. the following examples). To estimate the error intervals of each constant, we used the values of s_{p}, s_{b} for the corresponding dual-parameter correlations, and the experimental errors. We obtained, for example, for the 4-O- substituent: $\sigma^{\circ}-2.55$ to $-2.93, \Delta \sigma_{R}{ }^{+}-1.16$ to $-1.83, \sigma_{I}-0.33$ to -1.38 , and $\sigma_{R}{ }^{+}-2.53$ to -3.45 .

Table 1. Frequencies $\left(\mathrm{cm}^{-1}\right)$ and integrated intensities $\left(1 \mathrm{~mol}^{-1} \mathrm{~cm}^{-2}\right)$ of the nitrile stretching bands of substituted benzonitriles in hexamethylphosphoramide (HMPA) and dimethyl sulphoxide (DMSO)

		V^{CN}		$A_{\text {cN }}$	
No.	Substituents	HMPA	DMSO	HMPA	DMSO
A Benzonitriles with neutral substituents					
1	H	2226.7	2227.4	3510	4720
2	3-Methyl	2227.3	2227.3	3820	4670
3	4-Methyl	2226.4	2226.6	5190	6090
4	3,5-Dimethyl	$2229.5{ }^{\text {a }}$	$2230.0{ }^{\text {a }}$	3790	5060
5	4-Isopropyl	2224.9	2226.0	$1960{ }^{\text {a }}$	5810
6	3-Phenyl	2228.3	2228.6	4030	4120
7	4-Phenyl	2225.2	2226.8	5740	5930
8	3-Trifuoromethyl	2233.8	2234.7	2500	2800
9	4-Trifluoromethyl	2231.6	2232.9	1760	2510
10	4-Ethoxycarbonylmethyl	2227.0	2229.0	5000	6580
11	3-Cyano	2234.3	2235.0	$2220{ }^{\text {b }}$	$3170{ }^{\text {b }}$
12	4-Cyano	2230.0	2231.4	$1870{ }^{\circ}$	$2850{ }^{\circ}$
13	3,5-Dicyano	2242.7	2244.2	$1220{ }^{\text {b }}$	1600°
14	4-Formyl	2228.7	2230.6	2720	3360
15	3-Acetyl	2230.2	2231.3	3100	3320
16	4-Acetyl	2229.1	2230.3	2810	2980
17	4-Benzoyl	2229.0	2230.8	2430	2170
18	3-Carboxy	2231.0	2233.1	2650	3190
19	4-Carboxy	2229.5	2230.5	3690	3650
20	3-Ethoxycarbonyl	2231.6	2232.5	2670	2980
21	4-Ethoxycarbonyl	2229.4	2230.5	2970	3150
22	3-Fluoro	2232.6	2233.1	2920	3020
23	4-Fluoro	2229.5	2230.3	3840	4480
24	3-Chloro	2231.3	2231.8	2880	3580
25	4-Chloro	2229.2	2230.1	3830	4710
26	3-Bromo	2230.7	2231.7	2790	3830
27	4-Bromo	2228.5	2229.5	4100	4960
28	3-Aza	2231.3	2232.2	2560	3250
29	4-Aza	2235.2	2236.8	1040	1340
30	3-Amino	2223.2	2224.4	4940	5720
31	4-Amino	$2205.7{ }^{\text {a }}$	$2207.4^{\text {a }}$	17000	17200
32	3-Dimethylamino	2224.3	7224.9	5500	6640
33	4-Dimethylamino	2212.1	2211.4	18300	20000
34	3-Acetylamino	2227.3	2230.3	3230	3930
35	4-Acetylamino	2221.3	2222.5	8780	9200
36	4-Benzoylamino	2221.2	2222.2	6450	8520
37	3-Nitro	2235.1	2235.6	1960	2770
38	4-Nitro	2232.1	2233.3	1130	1720
39	3,5-Dinitro	2241.8	2243.1	967	1380
40	3-Hydroxy	2226.3	2229.0	4600	5030
41	4-Hydroxy	2220.1	2221.2	10300	12100
42	3-Methoxy	2228.6	2228.5	3550	4400
43	4-Methoxy	2223.0	2223.2	8170	9080
44	3,5-Dimethoxy	2228.1	2228.7	3470	4060
45	4-Methylsulphonyl	2231.0	2233.0	2490	2550
B Benzonitriles with anionic substituents					
46	$3-\mathrm{CO}_{2}{ }^{-}$	2224.7	2226.9	4040	4610
47	$3-\mathrm{NCHC}{ }^{-}$	2217.6	2219.0	7200	9250
48	$3-\mathrm{CH}_{3} \mathrm{CON}^{-}$	2218.5	2220.2	5480	7520
49	$3-\mathrm{O}^{-}$	2213.4	2214.8	7930	7980
50	$4-\mathrm{CO}_{2}{ }^{-}$	2222.9	2224.5	5960	7030
51	$4-\mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{-}$	2222.9	2224.0	6200	8860
52	$4-\mathrm{O}_{2} \mathrm{NHC}^{-}$	2205.6	2211.2	24200	24000
53	4-NCHC ${ }^{-}$	2179.4	2180.5	35200	39600
54	$4-\mathrm{EtO}_{2} \mathrm{CHC}^{-}$	2181.1	2183.8	51100	58000
55	$4-\left(\mathrm{O}_{2} \mathrm{CHC}\right)^{2-}$	2157	2161.8		97000
56	$4-\mathrm{H}_{2} \mathrm{C}^{-}$	2137			
57	$4-\mathrm{CH}_{3} \mathrm{CON}^{-}$	2200.6	2203.5	31200	31000
58	$4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CON}^{-}$	2200.8	2204.1	31700	29000
59	$4-\mathrm{NH}^{-}$	2166	2170.5		72000
60	$4-{ }^{-}$	2186.9	2188.2	39400	45000

${ }^{4}$ Excluded from the statistical treatment. ${ }^{6}$ Calculated for one nitrile group.

Table 2. Correlations of v_{CN} and $A^{\ddagger} \mathrm{CN}$ of benzonitriles with neutral substituents with substituent constants, according to the equations of Brown and Okamoto, Yukawa and Tsuno, and Taft [equatons (1)-(3)]

No.	\boldsymbol{Y}	Solvent	Series	Slope		$\boldsymbol{s} \boldsymbol{p}$	b	s_{b}	$\pm r$	S.d.	n
I According to Brown and Okamoto											
1	$V_{\text {cN }}$	HMPA	m	12.14		0.53	2226.8	0.3	0.9843	0.9	21
2	$v_{\text {CN }}$	DMSO	m	12.64		0.58	2227.7	0.3	0.9803	1.0	21
3	$v_{\text {CN }}$	HMPA	p	7.32		0.40	2226.8	0.3	0.9581	1.5	23
4	$V_{\text {cN }}$	DMSO	p	8.00		0.39	2227.8	0.2	0.9672	1.4	23
5	$A^{\frac{1}{4}} \mathrm{cN}$	HMPA	m	-24.55		0.95	62.2	0.5	0.9624	2.8	21
6	$A^{+} \mathrm{cN}$	DMSO	m	-25.05		0.96	68.3	0.5	0.9587	3.0	22
7	$A^{\frac{1}{c}} \mathrm{CN}$	HMPA	p	-38.81		0.75	68.4	0.5	0.9775	6.0	23
8	$A^{\frac{1}{3}} \mathrm{CN}$	DMSO	p	-38.05		0.69	72.1	0.5	0.9816	5.2	24
II According to Yukawa and Tsuno											
				r^{\prime}	ρ						
9	$V_{\text {CN }}$	HMPA	m and p	0.729	10.23	0.44	2226.7	0.2	0.9424	1.9	39
10	$V_{\text {CN }}$	DMSO	m and p	0.737	10.75	0.42	2227.7	0.2	0.9549	1.7	39
11	$A^{\frac{1}{c}} \mathrm{CN}$	HMPA	m and p	1.856	-25.25	0.37	62.4	0.3	0.9833	4.2	40
12	$A^{\frac{1}{2}} \mathrm{CN}$	DMSO	m and p	1.760	-25.22	0.35	67.7	0.3	0.9878	3.4	41

III According to Taft

				$\rho_{\text {I }}$	ρ_{R}						
13	$\mathrm{V}_{\text {cN }}$	HMPA	m	11.60	2.75	0.51	2227.4	0.3	0.9847	0.9	20
14	$V_{\text {CN }}$	DMSO	m	12.10	2.67	0.51	2228.1	0.3	0.9864	0.8	20
15	$V_{\text {CN }}$	HMPA	p	7.60	7.08	0.46	2226.6	0.3	0.9591	1.4	19
16	V_{CN}	DMSO	p	8.46	7.60	0.46	2227.6	0.3	0.9569	1.4	19
17	$A^{\frac{1}{t}} \mathbf{c N}$	HMPA	m	-21.77	-6.93	0.72	60.4	0.4	0.9773	2.3	21
18	$A^{\frac{4}{4} \mathrm{CN}}$	DMSO	m	-21.05	-7.75	0.68	65.6	0.7	0.9781	2.3	21
19	$A^{4} \mathrm{CN}$	HMPA	p	-33.59	-38.66	0.69	66.0	0.6	0.9796	5.8	19
20	$A^{\frac{1}{4} \mathrm{CN}}$	DMSO	p	-27.95	-39.41	0.49	68.5	0.5	0.9887	4.2	20

s_{ρ}, Standard deviation of the slope; s_{b}, standard deviation of the intercept; r, correlation coefficient; s.d., standard deviation; n, number of the data points; m, meta-series; p, para-series.

Table 3. Constants of anionic substituents, derived from the Yukawa-Tsuno equation, by simultaneous least-squares treatment

Substituents	σ°	$\left[\Delta \sigma_{R}{ }^{+}\right]$	σ^{+}	Limits
$3-\mathrm{CO}_{2}{ }^{-}$	-0.19	0.09	-0.10	$\begin{aligned} & -0.03 \\ & -0.15 \end{aligned}$
3-NCHC-	-0.81	-0.11	-0.92	$\begin{array}{r} -0.80 \\ -0.99 \end{array}$
$3-\mathrm{CH}_{3} \mathrm{CON}^{-}$	-0.93	0.18	-0.75	$\begin{aligned} & -0.64 \\ & -0.84 \end{aligned}$
$3-\mathrm{O}^{-}$	-1.38	0.23	-1.15	$\begin{aligned} & -1.03 \\ & -1.30 \end{aligned}$
$4-\mathrm{CO}_{2}{ }^{-}$	-0.16	-0.25	-0.41	$\begin{aligned} & -0.32 \\ & -0.71 \end{aligned}$
$4-\mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{-}$	-0.15	-0.38	-0.53	$\begin{aligned} & -0.45 \\ & -0.58 \end{aligned}$
4-O2NHC ${ }^{-}$	-0.50	-1.69	-2.19	$\begin{aligned} & -2.02 \\ & -2.35 \end{aligned}$
4-NCHC ${ }^{-}$	-4.16	-0.50	-4.67	$\begin{array}{r} -4.38 \\ -5.07 \end{array}$
$4-\mathrm{EtO}_{2} \mathrm{CHC}^{-}$	-2.86	-2.13	-5.00	$\begin{array}{r} -4.49 \\ -5.24 \end{array}$
4-($\left.\mathrm{O}_{2} \mathrm{CHC}\right)^{2-}$	-3.85	-3.32	-7.17	$\begin{aligned} & -6.76 \\ & -7.79 \end{aligned}$
$4-\mathrm{CH}_{3} \mathrm{CON}^{-}$	-0.96	-1.92	-2.90	$\begin{aligned} & -2.68 \\ & -3.23 \end{aligned}$
$4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CON}^{-}$	-0.87	-1.91	-2.77	$\begin{array}{r} -2.58 \\ -2.88 \end{array}$
$4-\mathrm{HN}^{-}$	-3.98	-2.25	-6.23	$\begin{array}{r} -5.77 \\ -6.89 \end{array}$
$4-\mathrm{O}^{-}$	-2.67	-1.59	-4.27	$\begin{array}{r} -3.99 \\ -4.53 \end{array}$
4- $\mathrm{H}_{2} \mathrm{C}^{-}$			-11.2 (r	

The values of σ^{+}given in Table 3 are sums of the corresponding σ° and $\Delta \sigma_{R}{ }^{+}$values, but their error intervals cannot be calculated by simple summation. The analysis of
the errors of σ^{+}, given in some detail in the Experimental section, demonstrates that the variations in these values tend to compensate each other. So, the errors of σ^{+}values are smaller than the sums of the errors of their components. Let us consider again the case of the $4-\mathrm{O}^{-}$substituent: $\sigma^{+}-3.2$ to -5.9 from single-parameter correlations, $\sigma^{+}-2.9$ to -4.8 from Taft-type correlations, taking into account the sum of errors, $\sigma^{+}-3.7$ to -4.8 from Yukawa-Tsuno-type correlations, taking into account the sum of errors, and σ^{+} -4.0 to -4.5 from Yukawa-Tsuno-type correlations, taking into account the error analysis.

We thus consider that the dual- (and, possibly, multi-) parameter approach to the determination of substituent constant is more promising than the usual single-parameter one.

Conclusions.-The method suggested in this paper yielded 14 sets of $\sigma^{\circ}, \Delta \sigma_{R}{ }^{+}$, and σ^{+}constants for anionic substituents. They are fairly self-consistent: the correlation coefficients of both v_{CN} and $A^{\frac{1}{\mathrm{CN}}}$ are $r>0.99$ for both the single-parameter (σ^{+}) and Yukawa-Tsuno-type correlations for the whole series of benzonitriles with both neutral and anionic substituents.

We hope the present set of substituent constants will prove suitable for correlations of other properties of molecules with charged substituents. The application of these constants to carbonyl frequencies and intensities is now being studied in our laboratory. Also, by increasing the number of the definition series and applying the same approach, one could increase the statistical reliability of the constants for anionic substituents.

Experimental

Commercially non-available nitriles were prepared and purified according to the literature. The anions were prepared by
metallation of the corresponding conjugate acids with dry sodium methoxide. This reagent proved ineffective for the anions 55,56 , and 59 (Table 1). The first two were obtained by metallation with dimsyl sodium (in DMSO) and naphthalene disodium (in HMPA); anion (59) was prepared in the latter manner only. The i.r. spectra were recorded on UR-20 and (independently) on IR-75 Carl Zeiss spectrophotometers in CaF_{2} cells of $0.06-0.24 \mathrm{~mm}$ path length. The integrated intensities were calculated by direct integration. The reproducibility was $\pm 0.3 \mathrm{~cm}^{-1}$ for v_{CN} and $c a .5 \%$ for A_{cN}.

Calculations.-The solution of the least-square problem involving four or eight equations with two unknowns (4.2 or 8.2 systems) was done by symmetrization of the matrix B in $\mathbf{B} \cdot \mathbf{x}=\mathbf{a}$, where \mathbf{B} is the matrix of regression coefficients taken from Yukawa-Tsuno- or Taft-type equations, x is the column vector of unknowns, and \mathbf{a} is the column vector of the differences $v-b_{v}$ and $A^{ \pm}-b_{A}^{\frac{1}{A}}$ for the given substituent, by multiplication by \mathbf{B}^{*} (\mathbf{B} transposed) $\mathbf{B}^{*} . \mathbf{B} \cdot \mathbf{x}=\mathbf{B}^{*}$. a the system arising, of two equations with two unknowns, was solved to obtain the required pair of substituent constants σ° and $\Delta \sigma_{R}{ }^{+}$, or σ_{I} and $\sigma_{R}{ }^{+}$.

The analysis of the errors of these constants (for 4.2 systems) arising from experimental errors, s_{ρ} and s_{b}, reveals that σ° becomes larger when $\Delta \sigma_{k}{ }^{+}$decreases, i.e. these errors compensate for each other in the value of σ^{+}. The largest (algebraic) values of σ^{+}were found for overestimated frequencies (by both experimental errors and s_{b}), underestimated intensities, and overestimated (absolute values of) slopes of the dualparameter correlations. They are given as upper threshold values of σ^{+}constants in Table 3. The smallest values of σ^{+} were produced by underestimated frequencies and slopes, and overestimated intensities. The set of these values constitutes the lower threshold of σ^{+}constants in Table 3. The largest values of σ° were found for underestimated frequencies, overestimated intensities, and nominal slopes of the starting regressions. This case gives simultaneously the smallest values of $\Delta \sigma_{R}{ }^{+}$. The smallest values of σ° appear for underestimated experimental data for both v_{CN} and $A^{\frac{1}{\mathrm{cN}}}$, and nominal slopes. This case demonstrates again the tendency for compensation of the variations of σ° and $\Delta \sigma_{R}{ }^{+}$.

Checking the Reliability.-We had the opportunity to check the reliability of the constants of some substituents from Table 3 on the basis of $v_{\mathrm{co}}-\sigma^{+}$correlations for compounds $\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{COX} \quad\left[\mathrm{X}=\mathrm{CH}_{3} \mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}, \quad \mathrm{CH}_{3}\right.$, and $\mathrm{R}^{\prime} \mathrm{C}_{6} \mathrm{H}_{4}$, equations (4)-(7); solvent DMSO] and $v_{c o}$ data (the same solvent) for some anions with the same general formula we recently obtained. ${ }^{16}$

$$
\begin{align*}
\text { methyl benzoates } v_{\mathrm{co}}=10.27 \sigma^{+} & +1720.1 \\
& r 0.987, \text { s.d. } 1.1, n 17 \tag{4}
\end{align*}
$$

$$
\begin{array}{rl}
\text { ethyl benzoates } v_{\mathrm{co}}=10.51 \sigma^{+}+ & 1714.1 \\
r & 0.992, \text { s.d. } 0.9, n 17 \\
\text { acetophenones } v_{\mathrm{co}}=13.49 \sigma^{+}+ & 1681.8 \\
r & 0.990, \text { s.d. } 1.2, n 23 \tag{6}
\end{array}
$$

benzophenones $v_{\mathrm{co}}=9.64 \sigma^{+}+1657.7$

$$
\begin{equation*}
r 0.980, \text { s.d. } 1.9, n 44 \tag{7}
\end{equation*}
$$

For example, we found the following results for the cases of $3-\mathrm{O}^{-}$and $4-\mathrm{O}^{-}$(substituent, equation, calculated $v_{c o}$, experimental v_{co}): 3-0 ${ }^{-}$, 4, $1708.8,1705.9$; 4-0 ${ }^{-}, 4,1676.2$, $1679.1 ; 3-\mathrm{O}^{-}, 5,1702.0,1703.1 ; 4-\mathrm{O}^{-}, 5,1669.2,1673.7$; $3-\mathrm{O}^{-}, 6,1666.3,1666.8 ; 4 \mathrm{O}^{-}, 6,1624.2,1630.0 ; 3 \mathrm{O}^{-}$,

7, $1646.6,1644.5 ; 4-\mathrm{O}^{-}, 7,1616.5 ; 1611.8$. So, the deviations for the 3-0- case are maximum $2.4 \mathrm{~cm}^{-1}$, mean 0.7 cm^{-1}; for the $4-\mathrm{O}^{-}$case are maximum $5.8 \mathrm{~cm}^{-1}$, mean $2.1 \mathrm{~cm}^{-1}$. Compared to the whole intervals of variations of v_{co} in these carbonyl series (compounds with both neutral and anionic substituents), viz. methyl and ethyl benzoates, $65 \mathrm{~cm}^{-1}$; acetophenones, $75 \mathrm{~cm}^{-1}$; benzophenones, $110 \mathrm{~cm}^{-1}$, the above deviations seem to be quite acceptable. For comparison, if the value for $\sigma^{+} 4-\mathrm{O}^{-}$of -2.3 , taken from ref. 13 , is substituted into equations (4)-(7), the deviations will be maximum 23.7 cm^{-1}, mean $19.5 \mathrm{~cm}^{-1}$.

Acknowledgements

We thank Dr. I. Pojarlieff, Institute of Organic Chemistry, Bulgarian Academy of Sciences, for a critical reading of the manuscript and some valuable suggestions. Thanks are due also to Dr. V. Dimitrov, same Institute, for some useful advice.

References

1 I. N. Juchnovski and I. G. Binev, in ' The Chemistry of Functional Groups, Suppl. C,' eds. S. Patai and Z. Rappoport, Wiley, New York-Chichester, 1982, ch. 4, pp. 107-135.
2 A. R. Katritzky and R. D. Topsom, Chem. Rev., 1977, 77, 639.

3 I. N. Juchnovski and I. G. Binev, Tetrahedron, 1977, 33, 2993.
4 H. C. Brown and I. Okamoto, J. Am. Chem. Soc., 1958, 80, 4979.

5 A. J. Hoefnagel, M. A. Hoefnagel, and B. M. Wepster, J. Org. Chem., 1978, 43, 4720.
6 M . Szwarc, 'Carbanions, Living Polymers, and Electron Transfer Processes,' Wiley-Interscience, New York, 1968, chs. 6-8.
7 W. F. Edgell, in 'Ions and Ion Pairs in Organic Reactions,' ed. M. Szwarc, Wiley, New York, 1972, vol. 1, ch. 4; I. N. Juchnovski and I. G. Binev, Compt. Rend. Acad. Bulg. Sci., 1973, 26, 659.
8 Y. Yukawa and Y. Tsuno, Bull. Chem. Soc. Jpn., 1959, 32, 911, 965; Y. Yukawa, Y. Tsuno, and M. Sawada, ibid., 1972, 45, 1198.
9 R. W. Taft, in 'Steric Effects in the Organic Chemistry,' ed. M. S. Newman, Wiley, New York, 1956, ch. 13; R. W. Taft, J. Am. Chem. Soc., 1957, 79, 1045; J. Phys. Chem., 1960, 64, 1805.

10 R. T. C. Brownlee, S. Ehrenson, and R. W. Taft, Prog. Phys. Org. Chem., 1973, 10, 1.
11 I. N. Juchnovski, Compt. Rend. Acad. Bulg. Sci., 1973, 19, 743; O. Exner and K. Bocek, Collect. Czech. Chem. Commun., 1973, 38, 50; C. Laurence and B. Wojtkowiak, Bull. Soc. Chim. Fr., 1971, 3124, 3833, 3870, 3874; L. W. Deady, A. R. Katritzky, R. A. Shanks, and R. D. Topsom, Spectrochim. Acta, 1973, A29, 115.

12 I. Juchnovski, I. Binev, J. Kaneti, and R. Kuzmanova, Izv. Khim. Inst., Bulg., Akad. Nauk., 1981, 14, 470.
13 A. J. Hoefnagel and B. M. Wepster, J. Am. Chem. Soc., 1973, 95, 5357.
14 H. van Bekkum, P. E. Verkade, and B. M. Wepster, Recl. Trav. Chim. Pays-Bas, 1959, 78, 815; Yu. A. Zhdanov and V. I. Minkin, 'Correlation Analysis in the Organic Chemistry,' Restov-on-Don, 1966, Table 15 and pp. 110-128.
15 V. A. Pal'm, 'Basic Principles of the Quantitive Theory of the Organic Reactions,' Khimiya, Leningrad, 1977, ch. 5.3.
16 I. N. Juchnovski, Ts. M. Kolev, and I. G. Binev, Spectrosc. Lett., 1981, 14, 763; I. G. Binev, Ts. M. Kolev, and I. N. Juchnovski., Izv Khim. Inst., Bulg. Akad. Nauk., 1981, 14, 341; I. G. Binev, I. N. Juchnovski, Ts. M. Kolev, and P. J. Vassileva, manuscript in preparation.

